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Rhodium and iridium trimethylphosphine com- 
plexes serve as models [I] and as catalysts [2] for 
homogeneously catalyzed processes, by virtue of the 
high basicity and small size of this versatile ligand. 
Catalytic photochemical activation of hydrocarbons 
by Rh(CO)(PMe,)2Cl [3] is thought to involve a 
14e Rh(I) trimethylphosphine intermediate. Evidence 
for intermediacy of such a complex in C-H activa- 
tion is provided by flash photolysis studies [4] and 
by studies of C-H reductive elimination [lb, 2a]. 

Whereas existence of stable 14e rhodium(I) com- 
plexes containing bulky phosphines [5] is perhaps 
not surprising, the isolation of stable Rh(PMe3)3+X- 
(X = BPh4, PF6) reported by Wilkinson and co- 
workers [6] is, in our view, quite unexpected. Even 
more surprisingly, this complex is reported as being 
formed upon anion exchange of the 1: 1 electrolyte 
Rh(PMe,),+Cl- (I), in an attempted preparation of 
Rh(PMe3)4+X- [6]. Citations of this work appear in 
the literature [5e, 71 and it is pointed out as sur- 
prising in a recent review [8]. 

Because of our general interest in low valent 
electron-rich complexes of rhodium, we have re- 
peated the reported procedure for the preparation 
of Rh(PMe3)3+BPh4- and have characterized the 
product by X-ray, showing that Rh(PMe3)4+BPh4- 
(2) is formed. We also report here the structure of 
the analogous Ir(PMe3)4+PF6- (3) [9], a highly 
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reactive complex useful for the formation of various 
unusual adducts [9, lo]. 

Treatment of an aqueous solution of 1 under 
nitrogen with a slight excess of NaBPh4 resulted in 
formation of a pale yellow powder, as reported [6]. 
The “P{‘H} NMR spectrum of this product in 
THF-ds at 25 ‘C shows a doublet at 6 -8.58 (J(Rh-P) 
= 132 Hz) which is unexpected for a T-shaped ground 
state RhL3 unit [5a, e, 1 l]**. Slow vapor diffusion 
of benzene into a pyridine solution of this complex 
during 3 days resulted in large orange plates ex- 
hibiting an unchanged 31P{1H) NMR spectrum. An 
X-ray structural study? unambiguously shows that 
Rh(PMe3)4+BPh4- (2) and not the tris complex was 
obtained (Fig. 1). (The preparation of Rh(PMe3)4- 
PF6- from a cationic Rh(1) indenyl complex was 
reported in ref. 12.) For comparison, we have also 
determined the structure of Ir(PMe3)4+PF6- (3) 
(Fig. 2), crystals of which were grown by vapor dif- 
fusion of pentane into a THF solution of the com- 
plex. 

2 forms an interesting arrangement in which two 
cation-anion pairs entrap a benzene molecule. The 
distances of CS-Rhl (3.53 A) and C8-Rh2 (3.49 A) 
are probably too large for an intermolecular ‘agostic’ 
Rh. l *H interaction. No interaction is observed be- 
tween the unsaturated rhodium center and the phenyl 
groups of the anion. The cation shows considerable 
distortion from planarity towards a tetrahedral 
arrangement, with P-P twist angles of 23.73 and 
28.12’ for Rhl and Rh2,. respectively. This is un- 
doubtedly a result of steric crowding of the PMe3 
ligands. A comparison of the pseudo-frans P-Rl-P 
angles shows that this distortion in 2 (P-Rh-P 
158.96, 152.6”; P-Rh2-P 157.8, 162.02”) is smaller 

**The reported [6] 31P{1H} NMR spectra are: Rh(PMe3)3+- 
BPhd- (in CDJNO~): 6 - 14.87 (br, d, J(Rh-P) = 110 Hz); 
Rh(PMe3)s+PF,- (in D20): 6 - 14.47 (br, s); -25 “C: 
6 - 14.99 (d, J(Rh-P) = 132.5 Hz). 

+Crystal data for 2: CmH llBB2P4Rh2, monoclinic-b, C2/c 
(No. 15), a = 25.762(7), b = 19.353(4), c = 21.246(5) A, 
fl= 131.26(l)‘. T= 173 K, V = 7962.5 A3, Z = 4, /.I (MO) = 
6.05 cm-‘; Syntex R3, MO Kol radiation; 8281 data collected 
using w scan method, 4.2” < 2s < 52.0’, 4826 unique reflec- 
tions with I > 3.00(0; solution by automated Patterson 
analysis (PHASE) and direct methods (MULTAN), refine- 
ment by full matrix least-squares technique, weights [o*(n + 
0.000912]- 1’2 408 parameters, all non-H atoms anisotropic, 
H atoms fixed: R = 0.044, R,= 0.052. 

For 3: C12H&P4*PF6, orthorhombic, P,,, (No. 62), 
a = 17.426(6), b = 13.907(4), c = 9.762(J) A, T= 90 K, 
V = 2121(2) A3. Z = 4, I = 65.37 cm ; Rigaku AFC5R 
diffractometer, 5051 data collected using w scan method, 
2” < 20 < 54.0”, 1955 unique reflections with F,, 2 3o(FJ; 
solution by automated Patterson analysis (SHELXS-86) and 
direct methods (SHELXS-86), refined by full matrix least- 
squares technique, weights [a2(F)]. 184 parameters, all 
non-H atoms anisotropic, H atoms from difference Fourier 
map refined, R = 0.041, R,= 0.034. 
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Fig. 1. Structure of 2 (hydrogen atoms omitted for clarity). Selected bond distances (A): Rh(l)-P(1) 2.313(2); Rh(l)-P(2) 
2.285(2); Rh(2)-P(3) 2.304(2); Rh(2)-P(4) 2.315(2). Selected bond angles (“): P(l)-Rh(l)-P(la) 158.96(9); P(l)-Rh(l)-P(2) 
92.48(6); P(l)-Rh(l)-P(2a) 92.48(6); P(2)-Rh(l)-P(2a) 152.6(l); P(3)-Rh(2)-P(3a) 157.8(l); P(3)-Rh(2)-P(4) 91.81(6); 
P(3)-Rh(2)-P(4a) 91.64(6); P(4)-Rh(2)-P(4a) 162.02(9). 
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Fig. 2. Structure of 3 (hydrogen atoms omitted for clarity). 
Selected bond distances (A); Ir(l)-P(1) 2.282(S); Ir(l)-P(2) 
2.289(S); k(l)-P(3a) 2.290(5);Ir(l)-P(3) 2.290(4). Selected 
bond angles (“): P(l)-k(l)-P(2) 149.3(l); P(l)-Ir(l)-P(3) 
93.2(2); P(2)-Ir(l)-P(3) 94.7(2); P(2a)-Ir(l)-P(3) 
150.3(l). 

than the one observed in 1 (P-Rh-P 15 1.46, 
148.293 or in Rh(PMezPh),+BF,-(150.77, 150.01”) 
[ 131, both having similar pseudo-rrans angles to those 

of the iridium analogues 3 (149.34 and Ir(PMePh&+- 
BF4- (150.5’=) [14]. The uniqueness of 2 may be a 
result of the cage structure, which may also be 
responsible for the considerable difference between 
the two pseudo-trans angles in each one of the 
molecules of 2. All of the above rhodium and iridium 
complexes show very similar M-P distance (-2.3 A) 
and also exhibit the same trend in M-P-C angles, the 
one involving the methyl on the transoid MP2 plane 
being considerably larger (by as much as 12’) than 
the two other M-P-C angles of the same PR, group. 

Conclusions 

(i) Anion exchange of Rh(PMe3)4’Cl- leads in our 
hands to Rh(PMe,),+BPh,- and not to Rh(PMe3)s+- 
BPh4- as previously reported. 

(ii) Rh(PMe&+BPh4- in the currently reported 
(cage) arrangement is significantly less distorted than 
Rh(PMe3),+CI-, Ir(PMe3)4+PF6- and other ML4+ 
complexes. 

(iii) Ir(PMe,),+PF6-, Rh(PMe,),+CI- and Rh- 
(PMe2Ph)4+BF4- are structurally very similar. 
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